Abstract
Separation of duplicated spindle poles is the first step in forming the mitotic spindle. Kinesin-5 crosslinks and slides anti-parallel microtubules, but it is unclear how these two activities contribute to the first steps in spindle formation. In this study we report that in monopolar spindles, the duplicated spindle poles snap apart in a fast and irreversible step that produces a nascent bipolar spindle. Using mutations in Kinesin-5 that inhibit microtubule sliding, we show crosslinking alone drives the fast, irreversible pole separation. Electron tomography revealed microtubule pairs in monopolar spindles have short overlaps that intersect at high angles and are unsuited for ensemble Kinesin-5 sliding. However, maximal extension of a subset of microtubule pairs approaches the length of nascent bipolar spindles and is consistent with a Kinesin-5 crosslinking driven transition. Finally, stochastic microtubule sliding by Kinesin-5 stabilizes the nascent spindle and sets a stereotyped equilibrium length.
Submitted Version
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.