Abstract

<p>Reinforced concrete dapped-end connections, which are common in existing Gerber-beam bridges, typically feature an inclined corner crack at service loads due to the high stress concentrations in the re-entrant corner. These cracks introduce corrosion issues and increase the stresses in the dapped-end reinforcement, which in the event of further deterioration and increased loading may lead to yielding and failure of the connection. This paper proposes a kinematics-based model for the complete behaviour of such connections which predicts the opening of the cracks based on first principles: compatibility, equilibrium and constitutive relationships. The model stems from an earlier kinematics-based approach for the capacity prediction of dapped-end connections failing along re-entrant corner cracks, and extends it to describe the complete pre-peak, peak and post- peak behaviour.</p>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.