Abstract

The Gough Stewart Robotic manipulator is a parallel manipulator with six-degree of freedom, which has six equations of Kinematics (Inverse and forward), with six variables (Lengths, Position, and Orientation). In this work derived the inverse equations, which used to compute the lengths of the linkages and its changes depended on the position and orientation of the platform's center, then derived the forward equations to calculate the position and orientation of the moving platform in terms of the lengths. This theoretical model of the kinematics analysis of the Gough Stewart has been built into the Simulink package in Matlab to obtain the lengths, position, and orientation for the manipulator at any time of motion. The input parameters (Position and Orientation) in inverse blocks compared with the output parameters (Position and Orientation) in the forward blocks, which show good results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.