Abstract

Complex strain patterns in the Gibraltar Arc derive from the interaction between the westward drift — and concomitant back-arc extension — of the arc hinterland (Alboran Domain) and the Europe–Africa convergence. In order to explore strain partitioning modes within the arc and the role played by large-scale oblique structures, we have studied the kinematics of the Torcal Shear Zone located at the northern branch of the Gibraltar Arc.The Torcal Shear Zone is a 70km-long, E–W brittle-ductile shear zone that underwent overall dextral transpression during the Late Miocene to Quaternary time. Within the Torcal Shear Zone strain is highly partitioned at multiple scales into shortening, oblique, extensional and strike-slip structures. Moreover, strain partitioning is heterogeneous along-strike giving rise to four distinct structural domains. In the central sector the strain is pure-shear dominated, although narrow sectors parallel to the shear walls are simple-shear dominated. A single N99°E–N109°E trending horizontal velocity vector (V→) could explain the kinematics of the entire central sector of the Torcal Shear Zone. Lateral domains have different strain patterns and are comparable to splay-dominated and thrust-dominated strike-slip fault tips.The Torcal Shear Zone provokes the subvertical extrusion of the External Betics units against the Alboran Domain and a dextral deflection of the structural trend. Moreover, the estimated V→ points to the importance of the westward motion of the hinterland relative to the external wedge and fits well with the radial outward thrusting pattern identified in the arc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call