Abstract

To investigate the kinematics of the neutral material around the Gum nebula, emission from hydroxyl at 1667 MHz was observed at many positions over the region. Fitting models of expanding shells to these data together with previously published molecular line data shows that the diffuse molecular clouds and cometary globules form a single expanding shell centred on G261−2.5. The mean angular radius is 10.5° and its maximum radius is 14°. The models show that the distance range to the expansion centre is from 200 pc to 500 pc. The path of the runaway O-star ζ Puppis passed within <0.5° of the expansion centre of the neutral shell ∼1.5 Myr ago. The supernova of the erstwhile binary companion of ζ Puppis is the probable origin of the Gum nebula and the swept up expanding neutral shell. The 500-pc distance to the supernova is adopted as the distance to the expansion centre of the neutral shell. At this distance the energy required to produce the observed expansion could have been met with a single supernova. The radii of the front and back faces of the shell are 130 and 70 pc respectively. The front face is expanding faster than the back face, at 14 and 8.5 km s−1 respectively. The extent of the neutral shell matches the radio continuum and Hα emission of the Gum nebula well. The photoionized gas in the nebula is probably primarily ionized by ζ Puppis, which is still within the neutral shell. No evidence was found for the IRAS-Vela shell as a separate expanding shell.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call