Abstract
Based on the LAMOST survey and Sloan Digital Sky Survey (SDSS), we use low-resolution spectra of 130,043 F/G-type dwarf stars to study the kinematics and metallicity properties of the Galactic disk. Our study shows that the stars with poorer metallicity and larger vertical distance from Galactic plane tend to have larger eccentricity and velocity dispersion. After separating the sample stars into likely thin-disk and thick-disk sub-sample, we find that there exits a negative gradient of rotation velocity $V_{\phi}$ with metallicity [Fe/H] for the likely thin-disk sub-sample, and the thick-disk sub-sample exhibit a larger positive gradient of rotation velocity with metallicity. By comparing with model prediction, we consider the radial migration of stars appears to have influenced on the thin-disk formation. In addition, our results shows that the observed thick-disk stellar orbital eccentricity distribution peaks at low eccentricity ($e \sim 0.2$) and extends to a high eccentricity ($e \sim 0.8$). We compare this result with four thick-disk formation simulated models, and it imply that our result is consistent with gas-rich merger model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.