Abstract

Large earthquakes are often preceded or followed by slow-slip events, which when better understood may help better understand the mechanisms of the earthquakes and the possibility of their prediction. This chapter summarizes kinematic values of large slow-slip events observed in Circum-Pacific subduction zones and creep events observed along strike-slip faults in California. The kinematic parameters include maximum slip S, duration T, rupture length L, rupture width, magnitude M, slip velocity VS, rupture velocity VR, and maximum slip/rupture length ratio S/L. For a large surface and subsurface creep event in California: S = 0.9–2.5 cm, T = 2–5 day, L = 6–8 km, W = 3–4 km, M = 4.7–4.8, VS = 0.4–0.5 cm/d, VR = 1.6–3.0 km/d, and S/L = 0.3–1.5 × 10−6. For a large short-term slow-slip event in Circum-Pacific subduction zones: S = 1–20 cm, T = 2–50 day, L = 20–260 km, W = 10–90 km, M = 5.6–7.0, VS = 0.1–0.8 cm/d, VR = 2–20 km/d, and S/L = 0.3–1.5 × 10−6. The latter kind of events have larger sizes in slip, duration, rupture length/width, and magnitude than the former, but are comparable in slip velocity, rupture velocity, and S/L ratio. The kinematic behaviors of both are similar, despite their large difference in temperature, pressure, and composition of the fault-zone materials. The larger size of the latter is probably due to their larger inertia caused by their larger overburden. Compared with normal earthquakes, the slip and rupture velocities of both are smaller by many orders of magnitude. But their S/L values, and thus stress drops, are smaller by only one or two orders of magnitude. For a large long-term slow-slip event in the subduction zones: S = 1–50 cm, T = 50–2500 day, L = 40–1000 km, W = 30–750 km, M = 6.0–7.7, VS = 0.01–0.10 cm/d, VR = 0.1–2 km/d, and S/L = 0.1–2 × 10−6. The estimated slip, duration, rupture length, and magnitude values are larger than the short-term events, but the average slip and rupture velocities are much smaller. This difference suggests that the long-term events may have commonly encountered stronger asperities, which can slow down or even break them into smaller short-term events.

Highlights

  • Tectonic faults may rupture rapidly to generate earthquakes or slowly without doing so

  • In Mexico, where the Cocos plate subducts beneath the North American plate along the Middle American Trench and great earthquakes occurred every 30–100 years, several long-term slow-slip events were detected below the seismogenic depth of 15–40 km with the following kinematic values: S = 9–30 cm, T = 90–400 days, L = 200–500 km, and W = 150–230 km

  • The estimated kinematic values are comparable to those downdip the seismogenic interface areas in other subduction zones

Read more

Summary

Introduction

Tectonic faults may rupture rapidly (seismically) to generate earthquakes or slowly (aseismically) without doing so. Earthquakes - Impact, Community Vulnerability and Resilience observed along the strike-slip faults in California. By such comparison, I hope to better understand the physical mechanisms of the different kinds of fault-slip behaviors and the mechanisms of the related hydrological, geochemical, and geophysical changes often accompanying them [16, 17]. I hope to better understand the physical mechanisms of the different kinds of fault-slip behaviors and the mechanisms of the related hydrological, geochemical, and geophysical changes often accompanying them [16, 17] Such understanding, in turn, may help us to explore the possibility of short-term prediction of some earthquakes

Creep events in California
Subsurface slow-slip events in California
Slow-slip events in Circum-Pacific subduction zones
Discussion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call