Abstract

AbstractA microcinematographic (50 f/s) study was performed on motile human spermatozoa. Eighty percent were found to have a linear trajectory and a pseudo‐sinusoidal head displacement pattern. Throughout their progression, the spermatozoa periodically rotated on their longitudinal axis at a frequency equal to that of flagellar wave formation. These waves were found always to begin on the same side of the cell and to propagate in the flattened plane of the head until the moment of rotation. At this time the wave had reached a point near the middle of the flagellum. Beyond this point, the flagellum moves out of the plane of the head. Different variables used to characterize the movement of spermatozoa included the velocity of progression, amplitude and velocity of head displacement, frequency of rotation, wave amplitude, and propagation velocity of the flagellar wave. Among these variables, it was the propagation velocity of the wave that was found to be best correlated with the velocity of spermatozoan progression. This flagellar wave exhibited two stages, one of initiation and one of propagation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call