Abstract

We derive the John–Sclavounos equations, describing the motion of a fluid particle on the sea surface, from first principles using Lagrangian and Hamiltonian formalisms applied to the motion of a frictionless particle constrained on an unsteady surface. This framework leads to a number of new insights into the particle kinematics. The main result is that vorticity generated on a stress-free surface vanishes at a wave crest when the horizontal particle velocity equals the crest propagation speed, which is the kinematic criterion for wave breaking. If this holds for the largest crest, then the symplectic two-form associated with the Hamiltonian dynamics reduces instantaneously to that associated with the motion of a particle in free flight, as if the surface did not exist. Further, exploiting the conservation of the Hamiltonian function for steady surfaces and travelling waves, we show that particle velocities remain bounded at all times, ruling out the possibility of the finite-time blowup of solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.