Abstract

An approach to finding the solution equations for simple manipulators is described which enhances the well known method of Paul, Renaud, and Stevenson, by explicitly making use of known decouplings in the manipulator kinematics. This reduces the set of acceptable equations from which we obtain relationships for the joint variables. For analyzing the Jacobian, such decoupling is also useful since it manifests itself as a block of zeros, which makes inversion much easier. This zero lock can be used to obtain a concise representation for the forward and inverse Jacobian computations. The decoupling also simplifies the calculations sufficiently to allow us to make good use of a symbolic algebra program (MACSYMA) in obtaining our results. Techniques for using MACSYMA in this way are described. Examples are given for several industrial manipulators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.