Abstract

Estimating human poses from videos is critical in human–computer interaction. Joints cooperate rather than move independently during human movement. There are both spatial and temporal correlations between joints. Despite the positive results of previous approaches, most of them focus on modeling the spatial correlation between joints while only straightforwardly integrating features along the temporal dimension, which ignores the temporal correlation between joints. In this work, we propose a plug-and-play kinematics modeling module (KMM) to explicitly model temporal correlations between joints across different frames by calculating their temporal similarity. In this way, KMM can capture motion cues of the current joint relative to all joints in different time. Besides, we formulate video-based human pose estimation as a Markov Decision Process and design a novel kinematics modeling network (KIMNet) to simulate the Markov Chain, allowing KIMNet to locate joints recursively. Our approach achieves state-of-the-art results on two challenging benchmarks. In particular, KIMNet shows robustness to the occlusion. Code will be released at https://github.com/YHDang/KIMNet.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.