Abstract

The kinematics and aerodynamics of the greater horseshoe bat, Rhinolophus ferrumequinum, in horizontal flight at a range of velocities are described. As flight speed increases there is a gradual change in the bat's wingbeat kinematics, wingbeat frequency decreasing and wingbeat strokeplane angles increasing. Associated with these changes are changes in the wings' incidence angles, particularly during the upstroke. At low speeds these are large and negative, suggesting thrust generation, while at high speeds these are positive and large, indicating that weight support and negative thrust are being generated. The change from one kinematic pattern to the other occurred gradually. The possible energetic and aerodynamic reasons for these changes are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.