Abstract
Objective: The purpose of this study was to assess the consistency of the gliding and push-off motion for single leg skating from the first to fourteenth steps. We hypothesized that: 1) there would be no difference in stroke trajectory, step rate, and cycle rate between the left and right steps of gliding; and 2) there would be a difference in the resultant velocity of toe push-off and the horizontal velocity of the center of mass after six step push-offs. Method: The study included five male 500-m speed skaters (mean height, 1.80 ± 0.02 m; mean weight, 76.8 ± 3.96 kg; record, 35.83 ± 0.30 sec; 100-m record, <9.97 sec). Data were collected from the first to fourteenth steps (40 m) and recorded using five digital JVC GR-HD1KR video cameras (Victor Co., Japan) operating at a sampling frequency of 60 fields/sec and shutter speed of 1/500 sec. For each film frame, the joint positions were digitized using the KWON3D motion analyzer. Position data were filtered with low-pass Butterworth 4th order at the cut-off frequency of 7.4 Hz. Results: The right toe of the skating trajectories at 2nd, 5th, and 7th strokes differed from those of the left toe. The angles of the right and left knee demonstrated unbalanced patterns from the flexion and extension legs. The step and cycle rates of the right and left leg differed from the start until 20 m. The resultant velocities of the toe at the push-off phase and of the body mass center diverged before the six push-offs. Conclusion: This study`s findings indicate that the toe of skating trajectory on left and right sliding after push-off should maintain a symmetrical trajectory. The resultant velocity of toe push-off and horizontal velocity from the center of body need to be separated after about six step push-offs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.