Abstract

We investigated the kinematic viscosity and electrical resistivity of the multicomponent Fe74Cu1Nb1.5Mo1.5B8.5Si13.5 melt during three heating–cooling cycles. The temperature dependence of kinematic viscosity and electrical resistivity have the anomalous zones in the same temperature range and they are associated with the liquid–liquid structure transition (LLST). The anomalies were explained by changes in the activation energy and the cluster size. As the cluster size decreases, the activation energy decreases, but the viscosity and electrical resistance increase. LLST begins with the cluster dissolution, and as a result, the Arrhenius plot becomes nonlinear in the transition temperature range. After three cycles of heating–cooling, the temperature dependences of the kinematic viscosity and electrical resistance did not qualitatively change, and this allows us to conclude that LLST is thermoreversible. With an increase in the number of thermal cycles, the activation energy of viscous flow decreases, as well as the onset temperature and temperature range of LLST.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.