Abstract

Increasing evidence supports the use of virtual reality for stroke rehabilitation. However, movement performance and quality may be diminished by the attributes of the virtual environment (VE), which may be detrimental to motor relearning. Our aim was to determine whether reach-to-grasp movements made in a low-cost 2DVE were kinematically similar to those made in a comparable physical environment (PE) in healthy subjects and subjects with stroke. Subjects (healthy = 15, stroke = 22) made unilateral and bilateral reach-to-grasp movements in a 2DVE and a similar PE. Arm and trunk kinematics were recorded with an optoelectronic measurement system (23 markers; 120 Hz). Temporal and spatial characteristics of the endpoint trajectory, arm and trunk movement patterns were compared between environments and groups. In each group, hand positioning at object contact time and trunk displacement were unaffected by the environment. Compared to PE, in VE, unilateral movements were less smooth and time to peak velocity was prolonged. In healthy subjects, bilateral movements were simultaneous and symmetrical in both environments. In subjects with stroke, movements were less symmetrical in VE. Aside from differences in endpoint displacement between environments, movement quality variables were unaffected by the 2DVE. Thus, using a low-cost 2DVE may be a valid approach for sensorimotor rehabilitation following stroke.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.