Abstract
Abstract We revisit the dimensional synthesis of a spatial two-link, two revolute-jointed serial chain for path following applications, focussing on the systematic development of the design equations and their analytic solution for the three precision point synthesis problem. The kinematic design equations are obtained from the equations of loop-closure for end-effector position in rotation-matrix/vector form at the three precision points. These design equations form a rank-deficient linear system in the link-vector components. The nullspace of the rank deficient linear system is then deduced analytically and interpreted geometrically. Tools from linear algebra are applied to systematically create the auxiliary conditions required for synthesis and to verify consistency. An analytic procedure for obtaining the link-vector components is then developed after a suitable selection of free choices. Optimization over the free choices is possible to permit the matching of additional criteria and explored further. Examples of the design of optimal two-link coupled spatial R-R dyads are presented where the end-effector interpolates three positions exactly and closely approximates an entire desired path.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.