Abstract
This paper contains locally rotationally symmetric kinematic self-similar perfect fluid and dust solutions. We consider three families of metrics which admit kinematic self-similar vectors of the first, second, zeroth and infinite kinds, not only for the tilted fluid case but also for the parallel and orthogonal cases. It is found that the orthogonal case gives contradiction both in perfect fluid and dust cases for all the three metrics while the tilted case reduces to the parallel case in both perfect fluid and dust cases for the second metric. The remaining cases give self-similar solutions of different kinds. We obtain a total of seventeen independent solutions out of which two are vacuum. The third metric yields contradiction in all the cases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.