Abstract
In this paper we revisit the problem of modelling analytically the kinematic interaction between a single pile and its surrounding soil under the action of seismic shear waves, by means of a Tajimi-type continuum elastodynamic model in three dimensions. The model provides the steady-state kinematic response of a cylindrical end-bearing pile embedded in a homogeneous viscoelastic soil layer, subjected to vertically propagating harmonic S-waves. Results of the model are first validated against the results of numerical simulations, and the results of an existing, approximate solution. Accordingly, we employ the model in a parametric study, where we investigate the sensitivity of the seismic response of piles to certain key problem parameters, including pile slenderness, soil-pile relative stiffness, excitation frequency and fixity conditions at the pile head. The solution yields closed-form expressions for pile deformations and for the soil resistance developing on the pile, that do not require introducing fitting coefficients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.