Abstract

AbstractSpontaneous rupture simulations along geometrically rough faults have been shown to produce realistic far‐field spectra and comparable fits with ground motion metrics such as spectral accelerations and peak motions from Ground Motion Prediction Equations (GMPEs), but they are too computationally demanding for use with physics‐based probabilistic seismic hazard analysis efforts. Here, we present our implementation of a kinematic rupture generator that matches the characteristics of, at least in a statistical sense, rough‐fault spontaneous rupture models. To this end, we analyze ~100 dynamic rupture simulations on strike‐slip faults with Mw ranging from 6.4 to 7.2. We find that our dynamic simulations follow empirical scaling relationships for strike‐slip events and provide source spectra comparable to a source model with ω−2 decay. To define our kinematic source model, we use a regularized Yoffe function parameterized in terms of slip, peak‐time, rise‐time, and rupture initiation time. These parameters are defined through empirical relationships with random fields whose one‐ and two‐point statistics are derived from the dynamic rupture simulations. Our rupture generator reproduces Next Generation Attenuation (NGA) West2 GMPE medians and intraevent standard deviations of spectral accelerations with periods as short as 0.2 s for ensembles of ground motion simulations. Our rupture generator produces kinematic source models for M6.4–7.2 strike‐slip scenarios that can be used in broadband physics‐based probabilistic seismic hazard efforts or to supplement data in areas of limited observations for the development of future GMPEs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call