Abstract

A new, relatively simple method for determining the kinematic properties of jellyfish is presented. The bell movement of the scyphomedusa (Aurelia sp.) during its pulsation cycle was analysed using computer-aided visualization. Sequences of video images of individual Aurelia in a large aquarium were taken using a standard video camera. The images were then processed to obtain time series of the relative positions of selected points on the surface of the medusa’s bell. The duration of the bell relaxation was longer than that of the bell contraction, thereby confirming published results. In addition, the area of the exumbrellar surface of Aurelia increased during bell relaxation by more than 1.3-times that of the exumbrellar surface area during the maximum contraction of the bell. The volume change during the bell pulsation cycle was also measured using the same visualization method. Significant changes, of up to 50%, in the subumbrellar cavity volume were revealed while, in contrast, the volume between the exumbrellar and subumbrellar surfaces generally remained unchanged during the entire pulsation cycle of the bell. Comparison of the time series of the exumbrellar surface area and of the subumbrellar cavity volume indicated that the change of volume takes place before the change of the surface area of the bell.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call