Abstract

Performance evaluation is a key issue for design and optimization of parallel kinematic machines (PKMs). Performance indices can provide valuable enhancements for improving performances of PKMs, in particular if they can account for several different performance indices with one comprehensive index. In order to formulate a suitable performance index, a comprehensive kinematic index, the kinematic tuning index (abbreviated to KTI), is formulated with the application of sort, while avoiding the variant units and amplitudes of different performance indices. Taking four types of Exechon-like PKMs, Exechon, Exe-Variant, Exe-I and Exe-II PKM, as examples, the proposed novel index KTI is applied to reveal the kinematic performances of the Exechon-like PKMs. The investigation results indicate that the Exe-I PKM with the topological architecture of 2UPR&1RPS claims the most excellent kinematic performances between the presented PKMs. Notably, with minor revisions, the proposed performance index can be extended and applied to other types of PKMs to provide useful guidances for structural optimization and rigidity enhancement in a comprehensive and efficient manner.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.