Abstract

The aim of this work is to develop an optimization methodology for the design of the arm of a small-sized working machine. The workspace and a reference maneuver are firstly defined together with a pre-defined redundant kinematic topology. The kinematic synthesis is framed as a constrained multi-objective problem with respect to link length variables. The constraints consider the capability of the machine to follow the assigned trajectory and to fulfill the joint limits. The cost function incorporates the solution of the inverse kinematics and uses several indices, e.g., total link lengths, manipulability, energy consumption. The multi-objective optimization problem is solved employing the weighting method, converting the initial problem into a single-objective one. The final scalar cost function is minimized by the Nelder-Mead method. On the basis of the outcomes of numerical simulations, the effectiveness and versatility of the developed procedure for the design of novel working machine arms is verified.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call