Abstract

The applications of functional ceramics are significantly limited by the brittleness and low reliability. Recent studies have shown that compressive residual stress can be created in ceramics by shot peening, which improves the contact strength and fatigue of ceramic components. However, the formation mechanism of residuals stress in shot peening is yet to understand. In this study, a pressure-dependent plasticity model has been incorporated into a finite element simulation model of shot peening to understand the process mechanism underpinning the residual stress formation. Since shot velocity is the key process parameter to dominate the impact energy which determines the deformation state of the peened surface and the resultant residual stress, a new kinematic model of shots has also been developed by incorporating air drag and travel distance inside and outside the peening nozzle. The results have shown that the shot velocity model can be used to predict shot velocity. The experiment-based model may help understand the process mechanism underpinning the residual stress formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.