Abstract

This article presents a quantitative method for assessing instantaneous and average lateral vocal-fold motion from high-speed digital imaging, with a focus on developmental changes in vocal-fold kinematics during childhood. Vocal-fold vibrations were analyzed for 28 children (aged 5-11 years) and 28 adults (aged 21-45 years) without voice disorders. The following kinematic features were analyzed from the vocal-fold displacement waveforms: relative velocity-based features (normalized average and peak opening and closing velocities), relative acceleration-based features (normalized peak opening and closing accelerations), speed quotient, and normalized peak displacement. Children exhibited significantly larger normalized peak displacements, normalized average and peak opening velocities, normalized average and peak closing velocities, peak opening and closing accelerations, and speed quotient compared to adult women. Values of normalized average closing velocity and speed quotient were higher in children compared to adult men. When compared to adult men, developing children typically have higher estimates of kinematic features related to normalized displacement and its derivatives. In most cases, the kinematic features of children are closer to those of adult men than adult women. Even though boys experience greater changes in glottal length and pitch as they mature, results indicate that girls experience greater changes in kinematic features compared to boys.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.