Abstract

Prospectively acquire magnetic resonance images of the neck in normal subjects and patients with radiculopathy to measure and compare measures of the facet joint space thickness and volume. The goal was to determine whether there is any difference in facet joint architecture between the 2 populations with the head in each of neutral and pain-eliciting rotation. Degeneration and altered mechanics of the facet joint can result in pathological nerve root compression and pain. Although lumbar facet joint space thinning has been reported in the context of low back pain, few studies have quantified the cervical facet joint space, especially in the context of pain. The cervical spine of 8 symptomatic and 10 asymptomatic subjects was imaged in the sagittal plane in a 3T magnetic resonance scanner, using a T2-pulse sequence optimized for bone imaging. The facet joint space was identified and segmented in the acquired images. The thickness and volume of the facet joint space, and their changes between positions, were computed from the 3-dimensional representation for all cervical levels on both sides. Generally, the facet joint space thickness and volume were smaller in the symptomatic subjects than in the asymptomatic subjects. The differences were more robust on the left, especially in neutral and left torsion. The changes in both volume and thickness from neutral to torsion were also different in sign and magnitude at isolated joint levels between the 2 populations. Quantification of the facet joint space architecture in the cervical spine of patients with radiculopathy is feasible using standard magnetic resonance imaging sequences. Measurements of the facet space thickness and volume, and their changes, from both pain-free and painful positions, can provide context for localizing potential sources of painful tissue loading. 3.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.