Abstract
In this paper, the authors study the kinematic isotropic configuration of spatial cable-driven parallel robots by means of four different methods, namely, (i) symbolic method, (ii) geometric workspace, (iii) numerical workspace and global tension index (GTI), and (iv) numerical approach. The authors apply the mentioned techniques to two types of spatial cable-driven parallel manipulators to obtain their isotropic postures. These are a 6-6 cable-suspended parallel robot and a novel restricted three-degree-of-freedom cable-driven parallel robot. Eventually, the results of isotropic conditions of both cable robots are compared to show their applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Intelligent Mechatronics and Robotics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.