Abstract

SummaryThis paper presents a parametric study that looks into the influence of pile rake angle on the kinematic internal forces of deep foundations with inclined piles. Envelopes of maximum kinematic bending moments, shear forces and axial loads are presented along single inclined piles and 2 × 2 symmetrical square pile groups with inclined elements subjected to an earthquake generated by vertically incident shear waves. Inclination angles from 0° to 30° are considered, and three different pile–soil stiffness ratios are studied. These results are obtained through a frequency–domain analysis using a boundary element–finite element code in which the soil is modelled by the boundary element method as a homogeneous, viscoelastic, unbounded region, and the piles are modelled by finite elements as Euler–Bernoulli beams. The rotational kinematic response of the pile foundations is shown to be a key factor on the evolution of the kinematic internal forces along the foundations. Copyright © 2015 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call