Abstract
Two-photon lithography (TPL) is a polymerization based technique that enables additive manufacturing of millimeter scale parts with submicron features. TPL equipment is often based on retrofitted optical microscopes that lack precise registration capabilities. Consequently, slow and error-prone visual alignment to fiducials is necessary if registration to pre-existing features is required. Herein, we have designed, built, and tested precise kinematic fixtures that are repeatable to within ±315 nm (3σ value) and passively register the build surface to TPL equipment with an accuracy of ±1.7 μm. This enables one to sequentially print with multiple materials by building the structures directly on top of the kinematic fixtures. In addition, the same fixtures passively register to an X-ray computed tomography (CT) system to enable non-destructive 3D inspection that is integrated with the fabrication process. These fixtures (i) provide a practical means to handle micro-scale parts during non-destructive imaging, (ii) reduce the set-up time for X-ray CT from more than an hour to less than a few minutes, and (iii) eliminate operator uncertainty from the multi-material printing and imaging process. As such, these fixtures enable new printing and imaging functionalities that are critical for high-quality additive manufacturing of multi-material polymer parts with microscale and submicron features.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.