Abstract

The development of additive manufacturing requires the improvement of 3D printers to increase accuracy and productivity. Delta kinematics 3D printers have advantages over traditional sequential kinematics 3D printers. The main advantage is the high travel speed due to the parallel movement of the platform from three pairs of arms. Another advantage is the relatively low cost due to the small number of structural components. However, delta 3D printers have received limited use. The main reason is the low positioning accuracy of the end effector. Errors in the manufacture and assembly of components of a parallel drive mechanism add up geometrically and cause an error in the position of the end effector. These formulas can be applied to a 3D printer as well. However, well-known studies consider deterministic models. Therefore, the analysis is performed for limiting size errors. The purpose of this article is to simulate the effect of statistical errors in displacements and arm lengths on the positioning errors of a platform with the end effector. The article effectively complements the field of error analysis research and provides theoretical advice on error compensation for delta 3D printer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.