Abstract
SUMMARYThree-dimensional (3D) enveloping grasps for dexterous robotic hands possess several advantages over other types of grasps. This paper describes a new method for kinematic 3D enveloping grasp planning. A new idea for grading the 3D grasp search domain for a given object is proposed. The grading method analyzes the curvature pattern and effective diameter of the object, and grades object regions according to their suitability for grasping. A new approach is also proposed for modeling the fingers of the dexterous hand. The grasp planning method is demonstrated for a three-fingered, six degrees-of-freedom, dexterous hand and several 3D objects containing both convex and concave surface patches. Human-like high-quality grasps are generated in less than 20 s per object.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.