Abstract

A calibration method of parallel robots for semi-physical simulation platform of space docking mechanism is presented in this paper. To calibrate the parallel robot, a coordinate measuring machine to measure the distance between three standard spheres on the moving platform and three standard spheres on the base platform is attached to the base platform and the pose calculation is established by the distance information. By treating each sub-chain of the parallel robot as a joint-link train, the pose error model in which kinematic parameter errors are considered is established from the kinematic equations and the loop properties of parallel mechanism. Using least squares and iterative algorithm the solution of kinematic parameters has been realized. The factors that influence the accuracy of kinematic calibration are studies in detail. The corresponding simulation calculation demonstrates that to find out a coefficient matrix with a good condition number is a precondition of the calibration algorithm. Some examples and calibration experiment are given to demonstrate the effectiveness of this approach. The position error RMS of the parallel robot is reduced from 4.2mm to 0.4mm and the orientation error RMS is also reduced from 0.6° to 0.1°. In this article, we have discussed some recent patent on kinematic calibration of parallel robots.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.