Abstract

The strain induced martensitic phase stabilizes the propagation of macroscopic shear band during displacement-controlled uniaxial tensile test of metastable austenitic stainless steels (316 L, 304) at liquid helium temperature (4.2 K). It leads to huge Lüders-type deformation, high hardening and large ductility of the specimen. In Lüders range, shear band develops across the specimen in discontinuous and sequential way, which is reflected by stress oscillation on stress-strain curve and comb-like profile of temperature recorded during tests (so called discontinuous plastic flow - DPF). Based on the time responses of temperature and elongation transducers, a full picture of the localized deformation behaviour of specimen at 4.2 K was obtained, including its both spatial and temporal features. Moreover, the experimental results clarified that DPF has mechanical origin and it is accompanied by thermal effects. The model of temperature distribution during DPF was proposed. The model involves temperature effects driven by the elastocaloric phenomenon (experimentally identified at 4.2 K) and the plastic power dissipation. Based on the model, kinematic and thermal limits of DPF in the austenitic stainless steels were determined.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.