Abstract

In the Western Alps, a steeply dipping km-scale shear zone (the Ferriere-Mollieres shear zone) cross-cuts Variscan migmatites in the Argentera-Mercantour External Crystalline Massif. Structural analysis joined with kinematic vorticity and finite strain analyses allowed to recognize a high-temperature deformation associated with dextral transpression characterized by a variation in the percentage of pure shear and simple shear along a deformation gradient. U–Th–Pb dating of syn-kinematic monazites was performed on mylonites. The oldest ~ 340 Ma ages were obtained in protomylonites, whereas ages of ~ 320 Ma were found in mylonites from the core of the shear zone. These ages indicate that the Ferriere-Mollieres shear zone is a still preserved Variscan shear zone. Ages of ~ 320 Ma obtained in this work are in agreement with ages of the dextral transpressional shear zones occurring in the Maures-Tanneron Massif and Corsica-Sardinia. However, transpression in the Argentera-Mercantour Massif started earlier than in other sectors of the southern Variscan Belt. This is possibly caused by the curvature of the belt triggering the progressive migration of shear deformation. Our data allow a correlation between the Argentera-Mercantour Massif and other segments of the Southern European Variscan Belt, in particular with Maures-Tanneron Massif and Corsica-Sardinia, and contribute to fill a gap in the age of activity and in the kinematics of the flow of the system of dextral shear zones of the southern portion of the EVSZ.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call