Abstract

AbstractIntroduction: Excessive load on the backpacks can lead to musculoskeletal injuries and gait alterations. The objective of this study was to analyze the electromyographic (EMG) activity in association to the kinematic during the stance and balance phases of gait performed with and without the use of the backpack. Methods Twelve volunteers have executed a gait cycle in 3 tasks: without the school backpack (SM), with a backpack with load equivalent to 10% (M10) and 20% (M20) of the body weight (BW). It was evaluated the ankle, knee and hip angular excursion (AE), linear displacement (LD) of the toe and ankle, knee, hip, shoulder, head and EMG activity of the tibialis anterior (TA), vastus medialis (VM), rectus abdominis (RA), gastrocnemius lateral (GL), biceps femoris (BF) and spinal erector (EE) muscles. Results In the LD in the stance phase there was an AP increase for the toe and ankle, hip and head (p<0.043). In the balance phase for VT (vertical) direction, the shoulder presented a smaller displacement as well as the toe, ankle, knee, hip, shoulder and head in the ML direction. In the AP direction, the toe displacement was smaller as well as the ankle (p < 0.038). The AE in both phases was smaller for the hip (p <0.006). In the balance phase the IEMG was higher for the RA (p = 0.034). Conclusion These results suggest that the transport of school backpacks with loads of more than 10%BW causes changes in the kinematic and in the muscular recruitment pattern.

Highlights

  • Excessive load on the backpacks can lead to musculoskeletal injuries and gait alterations

  • The results showed that, in the stance phase, when the three conditions were compared for VT and ML direction, there was no significant difference (Table 1)

  • In AP direction, during M20 condition, toe displacement was smaller compared to SM condition; in M20 condition and ankle displacement, it was smaller compared to M10 condition (Table 2)

Read more

Summary

Introduction

Excessive load on the backpacks can lead to musculoskeletal injuries and gait alterations. Methods: Twelve volunteers have executed a gait cycle in 3 tasks: without the school backpack (SM), with a backpack with load equivalent to 10% (M10) and 20% (M20) of the body weight (BW) It was evaluated the ankle, knee and hip angular excursion (AE), linear displacement (LD) of the toe and ankle, knee, hip, shoulder, head and EMG activity of the tibialis anterior (TA), vastus medialis (VM), rectus abdominis (RA), gastrocnemius lateral (GL), biceps femoris (BF) and spinal erector (EE) muscles. Ries et al (2012) observed head in previous position to the shoulders with the increased load of the school

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.