Abstract

IntroductionTumor necrosis factor-α (TNFα) has received significant attention as a mediator of lumbar radiculopathy, with interest in TNF antagonism to treat radiculopathy. Prior studies have demonstrated that TNF antagonists can attenuate heightened nociception resulting from lumbar radiculopathy in the preclinical model. Less is known about the potential impact of TNF antagonism on gait compensations, despite being of clinical relevance. In this study, we expand on previous descriptions of gait compensations resulting from lumbar radiculopathy in the rat and describe the ability of local TNF antagonism to prevent the development of gait compensations, altered weight bearing, and heightened nociception.MethodsEighteen male Sprague-Dawley rats were investigated for mechanical sensitivity, weight-bearing, and gait pre- and post-operatively. For surgery, tail nucleus pulposus (NP) tissue was collected and the right L5 dorsal root ganglion (DRG) was exposed (Day 0). In sham animals, NP tissue was discarded (n = 6); for experimental animals, autologous NP was placed on the DRG with or without 20 μg of soluble TNF receptor type II (sTNFRII, n = 6 per group). Spatiotemporal gait characteristics (open arena) and mechanical sensitivity (von Frey filaments) were assessed on post-operative Day 5; gait dynamics (force plate arena) and weight-bearing (incapacitance meter) were assessed on post-operative Day 6.ResultsHigh-speed gait characterization revealed animals with NP alone had a 5% decrease in stance time on their affected limbs on Day 5 (P ≤0.032). Ground reaction force analysis on Day 6 aligned with temporal changes observed on Day 5, with vertical impulse reduced in the affected limb of animals with NP alone (area under the vertical force-time curve, P <0.02). Concordant with gait, animals with NP alone also had some evidence of affected limb mechanical allodynia on Day 5 (P = 0.08) and reduced weight-bearing on the affected limb on Day 6 (P <0.05). Delivery of sTNFRII at the time of NP placement ameliorated signs of mechanical hypersensitivity, imbalanced weight distribution, and gait compensations (P <0.1).ConclusionsOur data indicate gait characterization has value for describing early limb dysfunctions in pre-clinical models of lumbar radiculopathy. Furthermore, TNF antagonism prevented the development of gait compensations subsequent to lumbar radiculopathy in our model.

Highlights

  • Tumor necrosis factor-a (TNFa) has received significant attention as a mediator of lumbar radiculopathy, with interest in tumor necrosis factor (TNF) antagonism to treat radiculopathy

  • TNF antagonism prevented the development of gait compensations subsequent to lumbar radiculopathy in our model

  • Pre-operative speeds were 29.8 ± 1.0 cm/sec; at Day 5 post-operation, sham animals walked at 34.9 ± 2.1 cm/sec, nucleus pulposus (NP) alone animals walked at 32.6 ± 1.5 cm/sec, and animals with NP and soluble form of TNF receptor type II (sTNFRII) walked at 39.0 ± 1.8 cm/sec

Read more

Summary

Introduction

Tumor necrosis factor-a (TNFa) has received significant attention as a mediator of lumbar radiculopathy, with interest in TNF antagonism to treat radiculopathy. Herniation of a lumbar intervertebral disc (IVD) can cause mechanical constriction and local inflammation of nearby neural structures, which may lead to radicular pain, numbness, weakness, and limb dysfunction [1,2,3] The pathway for this pathology has been investigated in a number of pre-clinical models, including mechanical constriction of a nerve root via suture ligation, application of exogenous pro-inflammatory mediators to a nerve root, and application of autologous nucleus pulposus (NP) tissue to a nerve root [4,5,6,7,8,9,10,11,12,13,14,15]. Blocking TNF activity through either TNF sequestration or competitive inhibition of membrane-associated TNF receptors may potentially modify disease processes associated with radiculopathy [4,6,8,13,20,26,27,28,32,33,34,35]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call