Abstract

The use of porphyroclasts rotating in a flowing matrix to estimate mean kinematic vorticity number (Wm) is important for quantifying the relative contributions of pure and simple shear in penetratively deformed rocks. The kinematic vorticity number determined for high temperature mylonitic gneisses in the Migif area in the Eastern Desert of Egypt range from ∼0.6 to 0.9. The results from vorticity and strain analyses indicate that deformation in the area deviated from simple shear. It is concluded that nappe stacking occurred early during the thrusting event, probably by brittle imbrications, and that ductile strain was superimposed on the nappe structure at high-pressure as shown by a penetrative subhorizontal foliation is developed subparallel to the tectonic contacts with the under- and overlying nappes. The accumulation of ductile strain during underplating was not by simple shear but involved a component of vertical shortening, which caused the subhorizontal foliation in the Migif area. In most cases, this foliation was formed during thrusting of the nappes onto each other, suggesting that nappe stacking was associated with vertical shortening.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.