Abstract
In this study, cubes of trabecular bone with a wide range of structural properties were scanned on a micro-computed tomography system to produce complete three-dimensional digitizations from which morphological and architectural parameters could be measured in a nondestructive manner. The cubes were then mechanically tested in uniaxial compression in three orthogonal directions and to failure in one direction to find the orthogonal tangent elastic moduli and ultimate strengths. After testing, the cubes were weighed and ashed to determine the apparent and ash densities. A high correlation between the basic stereologic measurements was found, indicating that there is a relationship between the amount of bone and number of trabeculae in cancellous bone. Regression analysis was used to estimate the modulus and ultimate strength; these regressions accounted for 68–90% of the variance in these measures. These relationships were dependent on the metaphyseal type and donor, with the modulus also dependent on the direction of testing. This indicates that the properties of the individual trabeculae, as well as their amount and organization, may be important in predicting the mechanical properties of cancellous bone.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.