Abstract

In this paper, the cable routing configurations for a cable-driven manipulator are introduced, and the impact of motion coupling caused by cable transmission routing of a 2n type cable-driven manipulator is analyzed in detail. Based on different configurations of cable routings, the relationship between variation of joint angles and the geometrical sizes of guide pulleys is established, represented by a matrix for coupled motion. Moreover, based on the effects of the motion coupling of a cable-driven manipulator, we propose the condition for the invariance of orientation, which can be achieved constraining of the geometrical sizes of guide pulleys and driven wheels. In addition, to identify the correctness of analysis for coupled motion, a 3-DOFs planer cable-driven manipulator prototyping model is constructed, and the kinematics and trajectory planning has been solved. Finally, the relationship among actuator space, joint space, and Cartesian space, including the mapping of the motion coupling, is experimentally validated. The property of invariance of orientation is also validated by an experiment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.