Abstract

Although the current 3-PRS parallel manipulators have different methods on the arrangement of actuators, they may be considered as the same kind of mechanism since they can be treated with the same kinematic algorithm. A 3-PRS parallel manipulator with adjustable layout angle of actuators has been proposed in this paper. The key issues of how the kinematic characteristics in terms of workspace and dexterity vary with differences in the arrangement of actuators are investigated in detail. The mobility of the manipulator is analyzed by resorting to reciprocal screw theory. Then the inverse, forward, and velocity kinematics problems are solved, which can be applied to a 3-PRS parallel manipulator regardless of the arrangement of actuators. The reachable workspace features and dexterity characteristics including kinematic manipulability and global dexterity index are derived by the changing of layout angle of actuators. Simulation results illustrate that different tasks should be taken into consideration when the layout angles of actuators of a 3-PRS parallel manipulator are designed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call