Abstract

The South Limon fold-and-thrust belt, in the back-arc area of southern Costa Rica, is characterized by a 90° curvature of the strike of the thrust planes and is therefore a natural laboratory for the analysis of curved orogens. The analysis of curved fold-and-thrust belts is a challenge because of the varying structural orientations within the belt. Based on seismic reflection lines, we created a 3-D subsurface model containing three major thrust faults and three stratigraphic horizons. 3-D kinematic retro-deformation modeling was carried out to analyze the spatial evolution of the fold-and-thrust belt. The maximum amount of displacement on each of the faults is (from hinterland to foreland); thrust 1: 800 m; thrust 2: 600 m; thrust 3: 250 m. The model was restored sequentially to its pre-deformational state. The strain history of the stratigraphic horizons in the model was calculated at every step. This shows that the internal strain pattern has an abrupt change at the orogenic bend. Contractional strain occurs in the forelimbs of the hanging-wall anticlines, while a zone of dilative strain spreads from the anticline crests to the backlimbs. The modeling shows that a NNE-directed transport direction best explains the structural evolution of the bend. This would require a left-lateral strike-slip zone in the North to compensate for the movement and thereby decoupling the South Limon fold-and-thrust belt from northern Costa Rica. Therefore, our modeling supports the presence of the Trans-Isthmic fault system, at least during the Plio-Pleistocene.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call