Abstract

Considering that the existing depth recovery approaches have different limitations when applied to Kinect depth data, in this article, we propose to integrate their effective features including adaptive support region selection, reliable depth selection, and color guidance together under an optimization framework for Kinect depth recovery. In particular, we formulate our depth recovery as an energy minimization problem, which solves the depth hole filling and denoising simultaneously. The energy function consists of a fidelity term and a regularization term, which are designed according to the Kinect characteristics. Our framework inherits and improves the idea of guided filtering by incorporating structure information and prior knowledge of the Kinect noise model. Through analyzing the solution to the optimization framework, we also derive a local filtering version that provides an efficient and effective way of improving the existing filtering techniques. Quantitative evaluations on our developed synthesized dataset and experiments on real Kinect data show that the proposed method achieves superior performance in terms of recovery accuracy and visual quality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.