Abstract

Indoor scene understanding based on the depth image data is a cutting-edge issue in the field of three-dimensional computer vision. Taking the layout characteristics of the indoor scenes and more plane features in these scenes into account, this paper presents a depth image segmentation method based on Gauss Mixture Model clustering. First, transform the Kinect depth image data into point cloud which is in the form of discrete three-dimensional point data, and denoise and down-sample the point cloud data; second, calculate the point normal of all points in the entire point cloud, then cluster the entire normal using Gaussian Mixture Model, and finally implement the entire point clouds segmentation by RANSAC algorithm. Experimental results show that the divided regions have obvious boundaries and segmentation quality is above normal, and lay a good foundation for object recognition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.