Abstract

These studies were undertaken to determine whether the kindling process induces persistent alterations in the functional status of neurons of the substantia nigra pars reticulata, a brain area identified previously as a site important in regulating the expression of generalized motor seizures. Extracellular, single-unit recordings of pars reticulata neurons were made in chloral hydrate-anesthetized, fully kindled rats (2–3 weeks after the last seizure), or unkindled control rats of the same age and weight. Kindling caused no alterations in several electrophysiological parameters examined. For instance, neither the number of active pars reticulata cells encountered, nor their firing rates, were significantly different between kindled and control groups. In addition, kindling failed to alter the sensitivities of pars reticulata neurons to iontophoretic application of two inhibitory transmitters, γ-aminobutyric acid and glycine, and two transmitters that excite these cells, glutamate and acetylcholine. These results suggest that while kindling produces enduring increases in seizure susceptibility, it causes no persistent interictal changes in either basal activity or several measures of transmitter sensitivity of substantia nigra pars reticulata neurons.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call