Abstract

Fertilization induces a species-specific Ca(2+) transient with specialized spatial and temporal dynamics, which are essential to temporally encode egg activation events such as the block to polyspermy and resumption of meiosis. Eggs acquire the competence to produce the fertilization-specific Ca(2+) transient during oocyte maturation, which encompasses dramatic potentiation of inositol 1,4,5-trisphosphate (IP(3))-dependent Ca(2+) release. Here we show that increased IP(3) receptor (IP(3)R) sensitivity is initiated at the germinal vesicle breakdown stage of maturation, which correlates with maturation promoting factor (MPF) activation. Extensive phosphopeptide mapping of the IP(3)R resulted in approximately 70% coverage and identified three residues, Thr-931, Thr-1136, and Ser-114, which are specifically phosphorylated during maturation. Phospho-specific antibody analyses show that Thr-1136 phosphorylation requires MPF activation. Activation of either MPF or the mitogen-activated protein kinase cascade independently, functionally sensitizes IP(3)-dependent Ca(2+) release. Collectively, these data argue that the kinase cascades driving meiotic maturation potentiates IP(3)-dependent Ca(2+) release, possibly trough direct phosphorylation of the IP(3)R.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.