Abstract

Mutations in the gene that encodes the atypical channel-kinase TRPM6 (transient receptor potential melastatin 6) cause HSH (hypomagnesaemia with secondary hypocalcaemia), a disorder characterized by defective intestinal Mg2+ transport and impaired renal Mg2+ reabsorption. TRPM6, together with its homologue TRPM7, are unique proteins as they combine an ion channel domain with a C-terminally fused protein kinase domain. How TRPM6 channel and kinase activity are linked is unknown. Previous structural analysis revealed that TRPM7 possesses a non-catalytic dimerization motif preceding the kinase domain. This interacts with a dimerization pocket lying within the kinase domain. In the present study, we provide evidence that the dimerization motif in TRPM6 plays a critical role in regulating kinase activity as well as ion channel activity. We identify mutations within the TRPM6 dimerization motif (Leu1718 and Leu1721) or dimerization pocket (L1743A, Q1832K, A1836N, L1840A and L1919Q) that abolish dimerization and establish that these mutations inhibit protein kinase activity. We also demonstrate that kinase activity of a dimerization motif mutant can be restored by addition of a peptide encompassing the dimerization motif. Moreover, we observe that mutations that disrupt the dimerization motif and dimerization pocket interaction greatly diminish TRPM6 ion channel activity, in a manner that is independent of kinase activity. Finally, we analyse the impact on kinase activity of ten disease-causing missense mutations that lie outwith the protein kinase domain of TRPM6. This revealed that one mutation lying nearby the dimerization motif (S1754N), found previously to inhibit channel activity, abolished kinase activity. These results provide the first evidence that there is structural co-ordination between channel and kinase activity, which is mediated by the dimerization motif and pocket interaction. We discuss that modulation of this interaction could comprise a major regulatory mechanism by which TRPM6 function is controlled.

Highlights

  • TRPM6 is an exceptional enzyme possessing a Mg2+ -permeant ion channel domain and a C-terminal protein kinase moiety [1,2,3,4]

  • We reveal how the kinase and channel are co-ordinately activated and we discuss the possibility that conformational change in the dimerization motif–dimerization pocket interface plays a critical role in regulating TRPM6 function

  • To analyse the TRPM6 kinase activity, we first expressed in human embryonic kidney (HEK)-293 cells full-length wild-type TRPM6 as well as a catalytically inactive TRPM6 mutant in which the kinase catalytic lysine residue is replaced by arginine (K1804R), which has been reported previously to abolish autophosphorylation [17]

Read more

Summary

INTRODUCTION

TRPM6 (transient receptor potential melastatin 6) is an exceptional enzyme possessing a Mg2+ -permeant ion channel domain and a C-terminal protein kinase moiety [1,2,3,4]. We have analysed in more detail the role that the TRPM6 dimerization motif plays in controlling kinase and channel activities. Catalytic screening of previously described TRPM6 disease mutants led to the identification of one missense mutation that results in kinase inactivation. These findings present new understanding of the interrelationship between the TRPM6 kinase and channel domains. We reveal how the kinase and channel are co-ordinately activated and we discuss the possibility that conformational change in the dimerization motif–dimerization pocket interface plays a critical role in regulating TRPM6 function

MATERIALS AND METHODS
RESULTS
DISCUSSION
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call