Abstract

ABSTRACT Plants have evolved many leucine-rich repeat receptor-like kinases (LRR-RLKs) that control all aspects of plant life in a kinase-dependent or -independent manner. DROOPY LEAF1 (DPY1), which is a subfamily II LRR-RLK authentic kinase, controls leaf droopiness by negatively regulating early brassinosteroid (BR) signaling in foxtail millet. In this study, we proved that overexpressing kinase-inactive DPY1 does not rescue the droopy leaf phenotype of dpy1 plants because the mutated DPY1 cannot repress BR signaling, suggesting that kinase activity is required for DPY1 to control BR signaling. Moreover, seven DPY1 sites potentially transphosphorylated by SiBAK1 were identified as crucial for DPY1 activation. These findings highlight the importance of kinase activity for the functionality of DPY1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call