Abstract

The cell growth-promoting peptide phytosulfokine (PSK) is perceived by leucine-rich repeat (LRR) receptor kinases. To elucidate PSK receptor function we analyzed PSKR1 kinase activity and binding to Ca(2+) sensors and evaluated the contribution of these activities to growth control in planta. Ectopically expressed PSKR1 was capable of auto- and transphosphorylation. Replacement of a conserved lysine within the ATP-binding region by a glutamate resulted in the inhibition of auto- and transphosphorylation kinase activities. Expression of the kinase-inactive PSKR1(K762E) receptor in the pskr null background did not restore root or shoot growth. Instead, the mutant phenotype was enhanced suggesting that the inactive receptor protein exerts growth-inhibitory activity. Bioinformatic analysis predicted a putative calmodulin (CaM)-binding site within PSKR1 kinase subdomain VIa. Bimolecular fluorescence complementation analysis demonstrated that PSKR1 binds to all isoforms of CaM, more weakly to the CaM-like protein CML8 but apparently not to CML9. Mutation of a conserved tryptophan (W831S) within the predicted CaM-binding site strongly reduced CaM binding. Expression of PSKR1(W831S) in the pskr null background resulted in growth inhibition that was similar to that of the kinase-inactive receptor. We conclude that PSK signaling requires Ca(2+) /CaM binding and kinase activity of PSKR1 in planta. We further propose that the inactivated kinase interferes with other growth-promoting signaling pathway(s).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.