Abstract

There are four genetically distinct components in the developing seeds of flowering plants: maternal sporophyte, gametophyte, endosperm, and embryo. Each component can potentially influence the quantity or quality of nutrients provided to the embryo of its seed, thereby reducing the amount available to embryos in other seeds of that plant. The theory of kin selection predicts that each component will be selected to favor its own embryo over the other embryos to the extent that it is more closely related to its own. Under this criterion, an embryo should be selected to try to acquire more nutrients than the endosperm should be selected to provide, the endosperm should try to supply more than the gametophyte should, and the gametophyte more than the parent sporophyte. Evidence for this conflict of interests is found in the higher frequency of endopolyploidy, nutrient-absorbing haustoria, and food storage tissues in the embryo and endosperm than in the gametophyte of maternal tissues. This theory also suggests how the gametophyte, which is the nurse tissue of gymnosperm seeds, was displaced from this role in the flowering plants by an endosperm initiated by a secondary fertilization. “Neoteny” in the pro-angiosperms created conditions in which (1) an endosperm initiated by double fertilization would be more closely related to the embryo than is the gametophyte and (2) the endosperm would be formed early enough to be of significant aid to the embryo. If this theory is correct it (1) requires a different approach to the study of seed morphology and physiology, (2) increases the plausibility of arguments that flowering plants are a polyphyletic group, (3) provides evidence that parents cannot always control the outcome of conflict with their offspring, and (4) forges a conceptual link in our understanding of the evolution of social interactions in plants and animals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.