Abstract

Grouping provides many potential benefits to individuals in terms of foraging and anti-predator protection. However, it has been suggested that individuals could gain additional benefits in terms of indirect fitness by grouping with kin. Surprisingly, the genetic composition of wild fish shoals and the importance of kin-associated shoaling remain poorly understood. The Trinidadian guppy (Poecilia reticulata) has life history traits that might promote kin structure of shoals such as internal fertilisation and small brood size in contrast to many other fish species. Even though previous studies did not find any indication of kin structure in shoals of adult guppies, it is possible that related juveniles remain together in shoals, partly because of lower mobility and because the advantages of kin association may change with age. Using 10 microsatellite markers, we conducted a genetic analysis on 40 shoals from four populations. Pair-wise relatedness was inferred using a modified version of the software package COLONY and permutation tests were conducted to test the hypothesis that kin occur together in juvenile shoals more often than expected by chance. The frequency of sib dyads among juveniles within shoals was significantly larger than that between shoals in two high predation populations but not in two low predation populations. This finding contributes to the understanding of factors underlying shoal composition and highlights the potential of recent methodological advances for detecting such relationships.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call