Abstract
Kimberlite magmas are volatile-rich, silica-poor ultrabasic magmas originating as small-degree mantle melts at depths of 150 km or greater. Alteration and entrained xenoliths obscure their original magma chemistry and properties. Kimberlite magmas decrease temperature by a few hundred degrees during ascent. Changes of melt composition can result as a function of assimilation. Stalling of kimberlite can result in fractional crystallization, loss of xenocrysts, and loss of volatiles. Multiple pulses of kimberlite magmas form several distinct geological units in the same pipe or intrusion. Kimberlite pipes form by explosive disruption and deformation of country rocks. Confinement in a pipe introduces new processes such as fluidization, dynamic sintering, and intense mixing between volcanic jets and concentrated trapped mixtures. Occurrences of extravent and crater-fill lithofacies indicate that kimberlite eruptions generate eruptive products that are similar to those produced by common magma types. Alteration is largely attributed to hydrothermal systems, diagenesis, and weathering involving external water.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.